48 research outputs found

    Five-year follow-up of underexpanded and overexpanded bioresorbable scaffolds: Self-correction and impact on shear stress

    Get PDF
    Underexpansion and overexpansion have been incriminated as causative factors of adverse cardiac events. However, dynamic biological interaction between vessel wall and scaffold may attenuate the adverse haemodynamic impact of overexpansion or underexpansion

    Progress in treatment by percutaneous coronary intervention: The stent of the future

    Get PDF
    First generation drug-eluting stents have considerably reduced in-stent restenosis and broadened the applications of percutaneous coronary interventions for the treatment of coronary artery disease. The polymer is an integral part of drug-eluting stents in that, it controls the release of an antiproliferative drug. The main safety concern of first generation drug-eluting stents with permanent polymers - stent thrombosis - has been caused by local hypersensitivity, delayed vessel healing, and endothelial dysfunction. This has prompted the development of newer generation drug-eluting stents with biodegradable polymers or even polymer-free drug-eluting stents. Recent clinical trials have shown the safety and efficacy of drug-eluting stents with biodegradable polymer, with proven reductions in very late stent thrombosis as compared to first generation drug-eluting stents. However, the concept of using a permanent metallic prosthesis implies major drawbacks, such as the presence of a foreign material within the native coronary artery that causes vascular inflammation and neoatherosclerosis, and also impedes the restoration of the vasomotor function of the stented segment. Bioresorbable scaffolds have been introduced to overcome these limitations, since they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage. This update article presents the current status of these new technologies and highlights their future perspectives in interventional cardiology

    The evolution of data fusion methodologies developed to reconstruct coronary artery geometry from intravascular imaging and coronary angiography data: a comprehensive review

    Get PDF
    Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.Cardiovascular Aspects of Radiolog

    Implications of a bioresorbable vascular scaffold implantation on vessel wall strain of the treated and the adjacent segments

    Get PDF
    Background: Metallic stents change permanently the mechanical properties of the vessel wall. However little is known about the implications of bioresorbable vascular scaffolds (BVS) on the vessel wall strain. Methods: Patients (n = 53) implanted with an Absorb BVS that had palpographic evaluation at any time point [before device implantation, immediate after treatment, at short-term (6-12 months) or mid-term follow-up (24-36 months)] were included in the current analysis. The palpographic data were used to estimate the mean of the maximum strain values and the obtained measurements were classified using the Rotterdam classification (ROC) score and expressed as ROC/mm. Results: Scaffold implantation led to a significant decrease of the vessel wall strain in the treated segment [0.35 (0.20, 0.38) vs. 0.19 (0.09, 0.29); P = 0.005] but it did not affect the proximal and distal edge. In patients who had serial palpographic examination the vessel wall strain continued to decrease in the scaffolded segment at short-term [0.20 (0.12, 0.29) vs. 0.14 (0.08, 0.20); P = 0.048] and mid-term follow-up [0.20 (0.12, 0.29) vs. 0.15 (0.10, 0.19), P = 0.024]. No changes were noted with time in the mechanical properties of the vessel wall at the proximal and distal edge. Conclusions: Absorb BVS implantation results in a permanent alteration of the mechanical properties of the vessel wall in the treated segment. Long term follow-up data are needed in order to examine the clinical implications of these findings

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration with IVUS

    Get PDF
    Background: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). Methods: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel's centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. Results: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. Conclusions: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: A patient-level pooled analysis of 7 contemporary stent trials

    Get PDF
    Objective To investigate the long- Term prognostic implications of coronary calcification in patients undergoing percutaneous coronary intervention for obstructive coronary artery disease. Methods Patient-level data from 6296 patients enrolled in seven clinical drug-eluting stents trials were analysed to identify in angiographic images the presence of severe coronary calcification by an independent academic research organisation (Cardialysis, Rotterdam, The Netherlands). Clinical outcomes at 3-years follow-up including all-cause mortality, death-myocardial infarction (MI), and the composite end-point of all-cause death-MI- Any revascularisation were compared between patients with and without severe calcification. Results Severe calcification was detected in 20% of the studied population. Patients with severe lesion calcification were less likely to have undergone complete revascularisation (48% vs 55.6%, p<0.001) and had an increased mortality compared with those without severely calcified arteries (10.8% vs 4.4%, p<0.001). The event rate was also high in patients with severely calcified lesions for the combined end-point death-MI (22.9% vs 10.9%; p<0.001) and death-MI- Any revascularisation (31.8% vs 22.4%; p<0.001). On multivariate Cox regression analysis, including the Syntax score, the presence of severe coronary calcification was an independent predictor of poor prognosis (HR: 1.33 95% CI 1.00 to 1.77, p=0.047 for death; 1.23, 95% CI 1.02 to 1.49, p=0.031 for death-MI, and 1.18, 95% CI 1.01 to 1.39, p=0.042 for death-MI- Any revascularisation), but it was not associated with an increased risk of stent thrombosis. Conclusions Patients with severely calcified lesions have worse clinical outcomes compared to those without severe coronary calcification. Severe coronary calcification appears as an independent predictor of worse prognosis, and should be considered as a marker of advanced atherosclerosis

    The impact of plaque type on strut embedment/protrusion and shear stress distribution in bioresorbable scaffold

    Get PDF
    AIMS: Scaffold design and plaque characteristics influence implantation outcomes and local flow dynamics in treated coronary segments. Our aim is to assess the impact of strut embedment/protrusion of bioresorbable scaffold on local shear stress distribution in different atherosclerotic plaque types. METHODS AND RESULTS: Fifteen Absorb everolimus-eluting Bioresorbable Vascular Scaffolds were implanted in human epicardial coronary arteries. Optical coherence tomography (OCT) was performed post-scaffold implantation and strut embedment/protrusion were analysed using a dedicated software. OCT data were fused with angiography to reconstruct 3D coronary anatomy. Blood flow simulation was performed and wall shear stress (WSS) was estimated in each scaffolded surface and the relationship between strut embedment/protrusion and WSS was evaluated. There were 9083 struts analysed. Ninety-seven percent of the struts (n = 8840) were well-apposed and 243 (3%) were malapposed. At cross-section level (n = 1289), strut embedment was significantly increased in fibroatheromatous plaques (76 ± 48 µm) and decreased in fibrocalcific plaques (35 ± 52 µm). Compatible with strut embedment, WSS was significantly higher in lipid-rich fibroatheromatous plaques (1.50 ± 0.81 Pa), whereas significantly decreased in fibrocalcified plaques (1.05 ± 0.91 Pa). After categorization of WSS as low (<1.0 Pa) and normal/high WSS (≥1.0 Pa), the percent of low WSS in the plaque subgroups were 30.1%, 31.1%, 25.4%, and 36.2% for non-diseased vessel wall, fibrous plaque, fibroatheromatous plaque, and fibrocalcific plaque, respectively (P-overall < 0.001). CONCLUSION: The composition of the underlying plaque influences strut embedment which seems to have effect on WSS. The struts deeply embedded in lipid-rich fibroatheromas plaques resulted in higher WSS compared with the other plaque types

    Angiography-based 4-dimensional superficial wall strain and stress: a new diagnostic tool in the catheterization laboratory

    Get PDF
    A novel method for four-dimensional superficial wall strain and stress (4D-SWS) is derived from the arterial motion as pictured by invasive coronary angiography. Compared with the conventional finite element analysis of cardiovascular biomechanics using the estimated pulsatile pressure, the 4D-SWS approach can calculate the dynamic mechanical state of the superficial wall in vivo, which could be directly linked with plaque rupture or stent fracture. The validation of this approach using in silico models showed that the distribution and maximum values of superficial wall stress were similar to those calculated by conventional finite element analysis. The in vivo deformation was validated on 16 coronary arteries, from the comparison of centerlines predicted by the 4D-SWS approach against the actual centerlines reconstructed from angiograms at a randomly selected time-point, which demonstrated a good agreement of the centerline morphology between both approaches (scaling: 0.995 +/- 0.018 and dissimilarity: 0.007 +/- 0.014). The in silico vessel models with softer plaque and larger plaque burden presented more variation in mean lumen diameter and resulted in higher superficial wall stress. In more than half of the patients (n = 16), the maximum superficial wall stress was found at the proximal lesion shoulder. Additionally, in three patients who later suffered from acute coronary syndrome, the culprit plaque rupture sites co-localized with the site of highest superficial wall stress on their baseline angiography. These representative cases suggest that angiography-based superficial wall dynamics have the potential to identify coronary segments at high-risk of plaque rupture and fracture sites of implanted stents. Ongoing studies are focusing on identifying weak spots in coronary bypass grafts, and on exploring the biomechanical mechanisms of coronary arterial remodeling and aneurysm formation. Future developments involve integration of fast computational techniques to allow online availability of superficial wall strain and stress in the catheterization laboratory.Cardiovascular Aspects of Radiolog
    corecore